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Objective: Molecular genetic approaches
provide a novel method of dissecting the
heterogeneity of psychotropic drug re-
sponse. These pharmacogenetic strategies
offer the prospect of identifying biological
predictors of psychotropic drug response
and could provide the means of determin-
ing the molecular substrates of drug effi-
cacy and drug-induced adverse events.

Method: The authors discuss methods is-
sues in executing pharmacogenetic stud-
ies, review the first generation of pharma-
cogenetic studies of psychotropic drug
response, and consider future directions
for this rapidly evolving field.

Results: Pharmacogenetics has been
most commonly used in studies of anti-
psychotic drug efficacy, antidepressant
drug response, and drug-induced adverse
effects. Data from antipsychotic drug
studies indicate that polymorphisms
within the serotonin 2A and dopamine re-
ceptor 2 genes may influence drug effi-
cacy in schizophrenia. Moreover, a grow-
ing body of data suggests a relationship

between the serotonin transporter gene
and clinical effects of the selective sero-
tonin reuptake inhibitors used to treat
depression. A significant relationship
between genetic variation in the cyto-
chrome P450 system and drug-induced
adverse effects may exist for certain med-
ications. Finally, a number of indepen-
dent studies point to a significant effect of
a dopamine D3 receptor polymorphism
on susceptibility to tardive dyskinesia.

Conclusions: Initial research into the
pharmacogenetics of psychotropic drug
response suggests that specific genes may
influence phenotypes associated with
psychotropic drug administration. These
results remain preliminary and will re-
quire further replication and validation.
New developments in molecular biology,
human genomic information, statistical
methods, and bioinformatics are ongoing
and could pave the way for the next gen-
eration of pharmacogenetic studies in
psychiatry.

(Am J Psychiatry 2004; 161:780–796)

The variation in individual clinical response to psy-
chotropic drug treatment remains a critical problem in
the management of the seriously mentally ill patient. Al-
though a minority of patients may experience complete
symptom remission, a large proportion of patients con-
tinues to experience significant psychiatric symptoms
(1), and in addition there is a subset of patients who de-
velop drug-induced adverse events that may range from
the troublesome to the life threatening (2). Moreover,
psychotropic drug efficacy may not occur until weeks af-
ter initiation of drug treatment (3), and thus, the time pe-
riod before a clinician can determine whether a specific
treatment is ineffective and consider alternative phar-
macotherapy can be lengthy. During this period, treated
patients may experience continuous psychiatric symp-
toms, employment loss, social dysfunction, medical
morbidity, and—in a significant proportion of patients
with psychosis and affective disorders—even commit
suicide (4).

Early efforts to identify the predictors of psychotropic
drug response focused on clinical variables with limited
success. More recent efforts with biological variables
such as plasma and CSF levels of neurotransmitter me-

tabolites, neurohormone levels, and brain imaging mea-
sures have provided some initially promising results (5–
9), but consistent data have remained elusive. A major
drawback of these approaches is the considerable varia-
tion in the biological variable being used as the indepen-
dent measure, which reduces the power of these mea-
sures to predict or correlate with measures of treatment
response.

Molecular genetic approaches provide a novel method
of dissecting the heterogeneity of psychotropic drug re-
sponse. This field of inquiry, traditionally termed “phar-
macogenetics,” provides a number of distinct advantages
in the search for informative correlates of psychotropic
drug response (Appendix 1). First, an individual subject’s
genotype is essentially invariable, and thus, collection of
the independent measure for analysis versus treatment re-
sponse can be performed at any time during treatment (or
thereafter) and remain unaffected by the treatment itself
(10). Second, current molecular biological techniques pro-
vide an accurate assessment of an individual’s genotype
(11), and measurement error plays little or no role in these
analyses. Third, the dramatic increase in the amount of
publicly available genomic information (12) now provides



Am J Psychiatry 161:5, May 2004 781

MALHOTRA, MURPHY, AND KENNEDY

http://ajp.psychiatryonline.org

the necessary data to conduct comprehensive studies of
individual genes and, perhaps, investigations of entire ge-
nomes. Finally, the ease of accessibility to genotype infor-
mation by means of peripheral blood samples, coupled
with advances in molecular techniques, has increased the
feasibility of routine DNA collection and genotyping in
large-scale clinical trials samples (13). Therefore, pharma-
cogenetic approaches provide a new opportunity to iden-
tify biological predictors of psychotropic drug response,
but perhaps more important, they may provide the means
to determine the actual molecular substrates of psycho-
tropic drug efficacy. In this article, we will discuss basic
methods issues in executing pharmacogenetic studies, re-
view the first generation of pharmacogenetic studies of
psychotropic drug response, and consider future direc-
tions for this rapidly evolving field.

Methods Issues

Phenotype Definition

A critical issue for genetic studies is the reliability and
validity of the phenotype under investigation. Disease
susceptibility studies use structured diagnostic interviews
and family informants, when available, but diagnostic het-
erogeneity remains a major potential confounder for
these studies. In psychiatric pharmacogenetics, the most
common phenotype has been short-term drug response,
in which efficacy is assessed by changes in standardized
rating scales such as the Brief Psychiatric Rating Scale
(BPRS) or the Hamilton Depression Rating Scale over peri-
ods that range from 3 weeks up to a few months. Little data
has been collected on remission rates or from longer-term
relapse prevention studies.

Few pharmacogenetic studies include placebo arms in
their design. In part, this is because of the ethical consid-
erations in conducting placebo-controlled studies in dis-
orders for which effective treatments are known to exist,
but economic considerations may also play a role. This
may be a particular problem in antidepressant studies
that use clinical response as a phenotype since the pla-
cebo response rate in many of these studies often ap-
proaches 30%–40% compared to an active treatment re-
sponse rate of 70% (14). These placebo response rates
suggest that half of the patients characterized as “active”
drug responders may be placebo responders, and thus,
these subjects could represent false positive observa-
tions in a pharmacogenetic analysis. Placebo “run-ins”
may diminish the frequency of this but are difficult to ac-
complish in the large-scale studies that are needed to
provide adequate power for pharmacogenetics. New
study designs may need to be developed to better ad-
dress this phenotypic issue.

Similarly, the phenotype of drug-induced side effects
may be complex. For example, patients may be taking
multiple medications or have comorbid illnesses that pre-
dispose them to the development of an adverse event.

Pharmacogenetic studies of antipsychotic drug-induced
weight gain are often conducted in patient populations
with chronic schizophrenia in which previous antipsy-
chotic drug treatment may have resulted in weight gain
(15). This may complicate the analysis of subsequent
weight gain when they take a new antipsychotic. Likewise,
in some cases, the underlying illness may contribute to the
development of an adverse event, and thus, the drug may
not be specifically responsible for the observed event.
These issues require careful consideration and should be
critically evaluated during consideration of the design of
pharmacogenetic studies, particularly those conducted in
chronically ill patient groups.

Heritability of Psychotropic Drug Response

Gene discovery studies may be informed by the assess-
ment of the contribution of genetic factors, or heritability
estimates, to the trait of interest. Although family, twin,
and epidemiological studies suggest that the major psy-
chiatric disorders have significant genetic components
(16), there is a paucity of heritability data regarding psy-
chotropic drug response. Heritability studies traditionally
involve ascertainment of twin pairs that are discordant for
zygosity or adoption studies of siblings separated at birth
(17), but these approaches are better suited to the study of
traditional illness classifications rather than drug re-
sponse. Moreover, pedigree studies of several generations
cannot provide informative data because of the continual
development of new psychotropic drugs and the subse-
quent alteration in prescription patterns.

The majority of heritability data on psychotropic drugs
is from studies of antidepressant drug response. Angst
(18) examined 41 first-degree relative pairs that were
both treated with the tricyclic antidepressant imipra-
mine and reported that 38 pairs were concordant for re-
sponse. Pare et al. (19) studied first-degree relatives of
170 depressed patients who had participated in antide-
pressant drug clinical trials and assessed concordance
rates in the relative pairs that underwent similar treat-
ment. Of the 12 cases of concordant treatments, both
members of each relative pair had equivalent responses,
with an overall rate of response of 42%. A follow-up study
of a new cohort (20) found that 10 of 12 patients with
concordant antidepressant treatment were concordant
for clinical response. These data are consistent with a ret-
rospective analysis of two generations of a family with
multiple ill relatives with major depression in which all
four family members who underwent treatment with the
monoamine oxidase inhibitor tranylcypromine responded,
despite nonresponse to conventional treatment (21). Fi-
nally, Franchini et al. (22) studied 45 first-degree relative
pairs who were treated with the serotonin reuptake in-
hibitor fluvoxamine for at least 6 weeks. A total of 67% of
the relative pairs were concordant for response, com-
pared to the 50% that would be expected by chance.
These studies suggest that genetic factors may play a role
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in antidepressant drug response; however, it is possible
that shared environmental factors may bias relative pairs
toward similar response patterns. Studies designed to
specifically assess the heritability of antidepressant drug
response may still be required.

There is less data on the heritability of antipsychotic
drug response. One line of evidence that suggests that ge-
netic factors play a role is derived from studies of treat-
ment response across different ethnic groups. A recent
study incorporating data from randomized clinical trials
found that black patients displayed greater acute response
(in 6 weeks) to treatment with atypical and typical antipsy-
chotic agents than white patients of European descent
(23). In this study, however, there were significant differ-
ences in baseline symptoms between groups and no con-
trol for potential differences in nutritional status and body
mass. Moreover, underlying cultural bias in the treatment
and assessment of disparate ethnic groups may play a role
in apparent treatment response variation (24). Other data
on the heritability of antipsychotic drug response is lim-
ited to a study of 28 schizophrenia sibling pairs that found
no more concordance for the response to typical antipsy-
chotic agents than that predicted by chance (25) and case
reports (26, 27) of monozygotic twin pairs with schizo-
phrenia who were concordant for atypical antipsychotic
response despite prior nonresponse to typical antipsy-
chotic agents.

Pharmacogenetics 
of Antipsychotic Drugs

In psychiatry, pharmacogenetic studies have focused on
three major phenotypes: clinical efficacy of antipsychotic
drugs, efficacy of antidepressant medications, and devel-
opment of adverse effects associated with psychotropic
drug treatment.

Pharmacogenetic studies of antipsychotic drug re-
sponse have focused on the atypical antipsychotic drug
clozapine, perhaps because of the ease of access to blood
samples from clozapine-treated patients from which to
extract DNA or because clozapine’s superior efficacy in
treatment-resistant populations (28) suggests that an un-
derstanding of the genetic contributions to its effects
could provide novel data on the molecular basis of anti-
psychotic efficacy. The initial clozapine studies were con-
ducted either in the context of clinical trials of clozapine
(29, 30) or were based upon retrospective analyses of clo-
zapine-treated patients (31–34) in ethnically heteroge-
neous study groups derived from Western countries, in-
cluding the United Kingdom, Germany, and the United
States.

Pharmacogenetic studies of clozapine have primarily
used a candidate gene approach (Figure 1), with genetic
loci in the dopamine and serotonin receptor systems—
obvious candidates because of the high affinity of cloza-
pine for these receptor subtypes. Arranz and colleagues
(31) initially attracted interest in the serotonin 5-HT2A

T102C polymorphism with a report of a significant (p=
0.02) association between the 102C allele and failure to
respond to clozapine in a cohort of 149 patients with
chronic schizophrenia who were retrospectively assessed
with the Global Assessment Scale. These data were not
replicated in a series of smaller clozapine studies from in-
dependent laboratories (29, 35–37), as well as in a study
that included typical antipsychotic agents (38) (Table 1).
5-HT2A T102C could be considered a relatively weak can-
didate polymorphism because it does not result in an
amino acid substitution at the protein level and there is
little evidence that it produces significant functional ef-
fects on 5-HT2A receptor function (40). A less common
polymorphism within the 5-HT2A gene, His452Tyr, which
was not found to be in significant linkage disequilibrium
(nonrandom population association) with T102C (29),

FIGURE 1. Testing of a Single Nucleotide Polymorphism (SNP) in the Coding Region of a Gene, Resulting in an Alteration of
the Amino Acid Sequence of the Corresponding Proteina

a In the figure, two individuals’ DNA sequences differ at one locus (an adenine-to-guanine SNP), with resultant amino acid substitution in the
protein: arginine (Arg) versus glycine (Gly). Because these two subjects’ protein structures are distinct, this could result in phenotypic differ-
ences between the subjects, such as variation in response to medication.
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does appear to produce functional effects in vitro; how-
ever, it has not consistently been found to be associated
with clozapine response (29, 35).

Nevertheless, more recent data suggest that the posi-
tive association between 5-HT2A T102C and clozapine
response may not have been a false positive result. First,
this variant is in strong linkage disequilibrium with a pu-
tatively functional polymorphism, –1438 G/A, in the
promoter region of the gene (41). Second, a meta-analy-
sis of clozapine pharmacogenetic studies of 5-HT2A

T102C revealed an excess of the 102C allele in clozapine
nonresponders in each data set, with a significant effect
of this variant on clozapine response in the combined
sample (42). Since the majority of studies included in
this meta-analysis were published as “negative” studies,
publication bias is unlikely to have confounded these
results, and the smaller studies may have provided in-
sufficient power to detect the modest effects of this gene
on a complex clinical phenotype such as clozapine re-
sponse. Finally, a recent study of 5-HT2A T102C and anti-
psychotic response to the atypical agent risperidone in
100 Han Chinese schizophrenia patients (39) also identi-
fied an association, but in this instance, the association
was in the opposite direction than previously observed
in primarily Caucasian study groups. Definitive studies
with larger group sizes, prospective clinical data, and
comprehensive examination of the gene will be needed
to further address the role of this gene in antipsychotic
drug response.

Other serotonin-related genes that have been exam-
ined in pharmacogenetic studies of clozapine include the
5-HT2C (30, 32, 37, 43), the 5-HT6 (44, 45), the 5-HT7 (45),
as well as the serotonin transporter (SLC6A4) gene (46,
47). Although there have been some positive reports of as-
sociation, there is little current evidence to suggest that

variation within these genes significantly influences clo-
zapine’s efficacy.

In addition to significant affinities for serotonin recep-
tor subtypes, clozapine is also a dopamine receptor an-
tagonist. Initial pharmacogenetic studies focused on the
relationship between the dopamine D4 receptor gene
(DRD4) and clozapine response (48, 49). DRD4 was an
attractive candidate gene because of clozapine’s affinity
for the D4 receptor (50) and the identification of a com-
mon variable number of tandem repeat polymorphisms
within the putative third cytoplasmic loop of the recep-
tor, associated with significant effects on the binding af-
finity of the receptor for clozapine (51). Most groups,
however, have been unable to detect a significant associ-
ation between this variant and clozapine response (48,
49, 52, 53). Ozdemir and colleagues (54) have reported an
association between a repeat polymorphism within the
first intron of DRD4 in a preliminary study of 50 patients;
however, correction for multiple testing could alter the
significance of these results. Clinical trials demonstrat-
ing that dopamine D4 receptor antagonists are ineffec-
tive in the treatment of schizophrenia (55) have also di-
minished enthusiasm for this receptor in antipsychotic
drug efficacy.

Another obvious candidate for pharmacogenetic stud-
ies of antipsychotic drug response is the D2 receptor gene
(DRD2). To date, all known antipsychotic drugs have po-
tent affinities for the D2 receptor (56, 57), and functional
brain imaging studies have suggested that D2 receptor
binding by antipsychotic agents may be “necessary and
sufficient” for antipsychotic efficacy (58). However, there
are few common polymorphisms within the coding re-
gions of DRD2 (59), and thus, fewer studies of DRD2 and
antipsychotic drug response have been conducted, com-
pared with the 5-HT system.

TABLE 1. Studies of the Association Between the Serotonin 5-HT2A T102C Polymorphism and Response to Antipsychotic
Drugs

Study Year Subjects Medication Design Outcome Measures Result
Arranz et al. (31) 1995 149 west European 

patients with 
schizophrenia

Clozapine Retrospective 
assessment of 12 
weeks of treatment

Global Assessment 
Scale

C102/C102 genotype 
more frequent in 
nonresponders (53%) 
than responders (26%)

Masellis et al. (40) 1995 126 U.S. patients with 
schizophrenia

Clozapine 6-month trial after 
washout

Brief Psychiatric 
Rating Scale (BPRS)

No association

Nothen et al. (35) 1995 146 German patients with 
schizophrenia

Clozapine Retrospective 
assessment after at 
least 28 days of 
treatment

Categorical 
assessment 
of response

No association

Malhotra et al. (29) 1996 70 U.S. patients with 
schizophrenia or 
schizoaffective disorder

Clozapine 10-week trial BPRS No association

Masellis et al. (37) 1998 185 U.S. patients with 
schizophrenia

Clozapine 6-month trial after 
washout

BPRS at 6 months 
plus Clinical Global 
Impression scale

No association

Lin et al. (36) 1999 97 Chinese patients with 
schizophrenia

Clozapine 8 weeks of treatment BPRS No association

Lane et al. (39) 2002 100 Chinese patients with 
schizophrenia

Risperidone 6 weeks of treatment 
after washout

Positive and Negative 
Syndrome Scale

C102/C102 genotype 
associated with better 
response
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Two preliminary studies have included evidence that
genetic variation within DRD2 is associated with antipsy-
chotic response (60, 61). Moreover, Shäfer and colleagues
(62) examined the relationship between haloperidol, an
antipsychotic drug with greater D2 affinity than cloza-
pine, and the DRD2 Taq1A polymorphism and found that
subjects with the A2/A2 genotype displayed poorer clini-
cal response than heterozygous patients (no A1/A1 ho-
mozygotes were obtained). The distinction between ge-
notypic groups was evident after 2 weeks of treatment,
with 63% of the heterozygous subjects meeting response
criteria versus 29% of the subjects with the A2/A2 geno-
type. Consistent with these results, recent preliminary
data have suggested a relationship between the Taq1 A2/
A2 genotype and failure to respond to risperidone (63),
another agent with greater D2 affinity than clozapine. Fi-
nally, Suzuki and colleagues (64) report preliminary evi-
dence for a relationship between DRD2 and response to
the typical antipsychotic agents bromperidol and nem-
onapride. Therefore, many, although not all (65), studies
suggest that variation within DRD2 may significantly in-
fluence response to antipsychotic drugs, particularly with
agents with higher affinities for the D2 receptor. It should
be noted, however, that these studies used two different
polymorphisms—the Taq1A variant and the promoter re-
gion variant –141C Ins/Del—that are located more than
250 kilobases (kb) apart from each other. Therefore, more
comprehensive examination of DRD2 and antipsychotic
drug response may be required.

Finally, it is increasingly recognized that any individual
gene’s effect on antipsychotic drug response will be mod-
est in most populations. Therefore, examination of multi-
ple genes and multiple single nucleotide polymorphisms
(SNPs) in order to identify sensitive and specific “predictor
profiles” is currently under way. A retrospective analysis of
19 candidate polymorphisms identified a grouping of six
variants that provided 76.7% success in predicting cloza-
pine response (66). Since these data have not yet been rep-
licated (67), it will be critical to conduct prospective stud-
ies of this profile before these data can be considered to
provide potential clinical use. Nevertheless, studies that
begin to dissect the complex interactions between genetic
loci and their effect on clinical phenotypes are likely to be
necessary for a greater understanding of the genetic con-
tribution to antipsychotic drug response.

Pharmacogenetics 
of Antidepressant Drugs

Pharmacogenetic studies of antidepressants can be
classified as addressing either pharmacokinetic or phar-
macodynamic effects. Genetic variants affecting the me-
tabolism of antidepressants may change pharmacokinetic
factors, such as plasma drug concentration and half-life.
Polymorphisms that affect the expression or function of
receptors and signal transduction molecules in the brain

may alter pharmacodynamics. Both pharmacokinetic and
pharmacodynamic changes can affect the efficacy and
side effects of antidepressants.

Pharmacokinetic pharmacogenetic studies have fo-
cused on polymorphisms in liver cytochrome P450 isoen-
zymes that metabolize many antidepressant medica-
tions. The most intensively investigated gene is CYP2D6,
which encodes debrisoquine hydroxylase. Many anti-
depressants, including tricyclics, selective serotonin re-
uptake inhibitors (SSRIs), venlafaxine, and others, are
metabolized primarily by debrisoquine hydroxylase (68).
The CYP2D6 gene is highly polymorphic, with over 70
known variants (for a current classification, view the CYP
P450 allele nomenclature at http://www.imm.ki.se/CYP-
alleles/). Homozygosity for null alleles gives rise to the
poor metabolizer phenotype for debrisoquine hydroxy-
lase characterized by no enzyme activity. Null allele het-
erozygosity or homozygosity for intermediate metabolic
alleles gives rise to an intermediate debrisoquine hydrox-
ylase metabolic phenotype characterized by impaired—
but not absent—enzyme activity (69–71). CYP2D6 gene
duplications give rise to the ultrametabolic activity of de-
brisoquine hydroxylase (72).

In highly controlled studies of drug metabolism per-
formed with healthy volunteers in pharmacokinetics
laboratories, the CYP2D6 genotype has been shown to
predict tricyclic and SSRI plasma concentrations (73–76).
However, there are few studies performed in clinical
settings. In a group of inpatient and outpatient geriatric
patients suffering from major depression, the CYP2D6
genotype predicted plasma nortriptyline levels at a steady
state (77). The genotype-drug concentration correlation
was evident, despite the fact that, on average, the patients
took 9.8 concurrent medications in addition to nortripty-
line. Hence, CYP2D6 genotyping could be useful in iden-
tifying patients likely to experience high plasma levels
when treated with nortriptyline. In a retrospective study
of 100 patients treated with tricyclic antidepressants and
other psychotropics in a state hospital, adverse events
were associated with CYP2D6 genotypes encoding de-
brisoquine hydroxylase with poor metabolism (78). These
results suggest that CYP2D6 genotypes could be useful in
identifying patients likely to experience antidepressant
side effects.

However, in a prospective, double-blind study of paroxe-
tine treatment of 122 patients with geriatric major de-
pression, Murphy et al. (79) found that the CYP2D6 geno-
type had no effect on medication-related adverse events
(determined by clinician ratings), treatment discontinu-
ations due to adverse events, and measures of treatment
efficacy, such as change in Hamilton depression scale
ratings over time. A number of studies have shown a re-
lationship between the CYP2D6 genotype (and/or the
debrisoquine hydroxylase phenotype) and paroxetine
levels during short- or long-term dosing (74, 80–84), al-
though another as yet unidentified cytochrome is also in-
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volved (84, 85). The safety margin of SSRI agents such as
paroxetine may be sufficient that impaired clearance in
patients with intermediate or poor debrisoquine hydrox-
ylase activity does not result in more adverse events. This
may also be the case with other modern antidepressants
that are metabolized largely by debrisoquine hydroxy-
lase. Recommendations for dose adjustments based on
CYP2D6 genotype have been published (86). However,
until more prospective pharmacogenetic data are avail-
able, these recommendations may be premature.

In addition to metabolizing many antidepressants, de-
brisoquine hydroxylase can also be inhibited by these
medications (87, 88). Thus, an individual with an exten-
sive or intermediate metabolic phenotype can be con-
verted to a poor metabolic phenotype when treated with
an SSRI such as paroxetine (89). This could result in tox-
icity if the patient were concurrently taking, for example,
an antihypertensive or antiarrhythmic substrate with a
narrow margin of safety. Case reports have been pub-
lished of fatalities after an inhibitor of debrisoquine
hydroxylase was coadministered with a debrisoquine
hydroxylase substrate (90). However, despite extensive
discussion in the literature on the consequences of de-
brisoquine hydroxylase inhibition (76, 91), clinical data
are surprisingly sparse, aside from case reports. There
may be considerable interindividual variation in the de-
gree of debrisoquine hydroxylase inhibition by agents
such as SSRIs (82, 83). Large-scale prospective studies are
needed in which patients with known genotypes initiate

antidepressant therapy and the effects on serum levels
and side effects of concurrent medications are moni-
tored longitudinally. In the study of Murphy et al. (79), 26
elderly depressed subjects who were treated with parox-
etine were also taking a medication classified as a de-
brisoquine hydroxylase substrate. These individuals had
no greater severity of adverse events than other paroxe-
tine-treated subjects, and there was no interaction be-
tween CYP2D6 genotype, concurrent substrate medica-
tions, and adverse events. It is important to note that
different results might have been obtained had the paroxe-
tine-treated subjects concurrently taken tricyclic anti-
depressants, potentially toxic debrisoquine hydroxylase
substrates that were not permitted in the study by Murphy
et al. (79). However, in a 4-year postmarketing survey, few
clinically significant interactions between paroxetine
and other medications were detected (92). Further data
are needed on this important topic, and clinicians should
continue to use appropriate caution when multiple med-
ications are prescribed.

The CYP3A4 liver enzyme is also involved in the metab-
olism of many psychotropics, including some antidepres-
sants (93–95). A number of allelic variants at the gene en-
coding CYP3A4 have been identified (92). The effects of
these variants on antidepressant metabolism in clinical
settings have yet to be tested.

If and when clinically useful pharmacogenetic markers
for antidepressant pharmacokinetics are identified, it re-
mains to be seen how rapidly these will be integrated into

TABLE 2. Studies of the Effects of the Long/Short Variant in the Promoter Region of the Serotonin Transporter Gene
(SLC6A4) on the Response to Selective Serotonin Reuptake Inhibitors in Patients With Major Depression

Study Year Subjects Medication Design Outcome Measures Result
Smeraldi et al. (97) 1998 53 Italian patients 

with major 
depression

Fluvoxamine Longitudinal 
cohort study of 
6 weeks

Baseline and weekly 
scores on 21-item 
Hamilton Depression 
Rating Scale

Long/long genotype 
produced better 
response than long/short 
and short/short 
genotypes

Pollock et al. (98) 2000 51 geriatric 
patients with 
major 
depression

Paroxetine Longitudinal 
cohort study of 
12 weeks

Baseline and weekly 
scores on the 17-item 
Hamilton depression 
scale

Long/long genotype 
produced better 
response than short/long 
and short/short 
combined genotypes

Zanardi et al. (99) 2000 60 Italian patients 
with major 
depression

Paroxetine Longitudinal 
cohort study of 
4 weeks

Baseline and weekly 
scores on the 21-item 
Hamilton depression 
scale

Long/long genotype 
produced better 
response than long/short 
and short/short 
genotypes

Kim et al. (100) 2000 120 Korean 
patients with 
major 
depression

Paroxetine and 
fluoxetine

Longitudinal 
cohort study of 
6 weeks

Baseline and 6-week 
scores on the 17-item 
Hamilton depression 
scale

Short/short genotype 
produced better 
response than long/short 
and long/long genotypes

Minov et al. (101) 2001 104 patients with 
major 
depression

A variety of 
antidepressants

Longitudinal 
cohort study of 
4 weeks

Baseline and 4-week 
scores on the 17-item 
Hamilton depression 
scale and the Clinical 
Global Impression 
scale

No differences among 
genotypes in outcome

Yoshida et al. (102) 2002 66 Japanese 
patients

Fluvoxamine Case-control 
study of 4 weeks

Response, defined as 
50% reduction in score 
on the Montgomery-
Åsberg Depression 
Rating Scale

Short allele was more 
frequent in responder 
group



786 Am J Psychiatry 161:5, May 2004

PHARMACOGENETICS OF PSYCHOTROPIC DRUGS

http://ajp.psychiatryonline.org

clinical practice. For example, although a strong case can
be made for therapeutic monitoring of drug concentra-
tions, there is limited clinical use of this currently available
technique in making treatment decisions (96).

A number of studies have also reported on pharmaco-
genetic markers that affect antidepressant pharmaco-
dynamics. In one of the first studies involving an SSRI,
Smeraldi and colleagues (97) showed that the “short”
form of a deletion/insertion polymorphism in the pro-
moter region of the serotonin transporter gene (SLC6A4)
impaired the efficacy of fluvoxamine in a group of 53 pa-
tients with major depression (Table 2). In some cell biol-
ogy studies, the long and the short versions of the SLC6A4
promoter polymorphism have been found to differen-
tially affect the expression of the 5-HT transporter pro-
tein (103, 104). SSRIs are thought to act through inhibi-
tion of the 5-HT transporter, so a genetic variant that
affects the expression of this protein could affect treat-
ment response even though the protein structure is un-
changed. The same effect of the SLC6A4  long/short
promoter polymorphism was reported by Pollock and
colleagues (98) in a study of 51 geriatric patients with ma-
jor depression who were treated with paroxetine. Subse-
quently, the Zanardi group confirmed this finding in a
group of 60 paroxetine-treated depressed patients (99).
Minov and colleagues (101) found no effect of the SLC6A4
promoter polymorphism on response in 104 patients re-
ceiving a variety of antidepressant treatment regimens.
This study is difficult to interpret because of heterogene-
ity in treatment regimen. However, Kim et al. (100) stud-
ied 120 Korean patients treated with fluoxetine or parox-
etine and found that the short variant of the SLC6A4
promoter was associated with a better treatment re-
sponse. A similar result was obtained by Yoshida et al.
(102) in a study with Japanese patients. One explanation
for these results may be that the effect of the SLC6A4 pro-
moter is dependent on ethnic background. In the studies
by Kim et al. (100) and Yoshida et al. (102), all patients
were Asian, whereas in other studies, the patients have
been predominantly non-Asian. In summary, the effect
of the SLC6A4 promoter variant on SSRI treatment is the
most robust antidepressant pharmacogenetic finding to
date. However, contrary results from a study of Asian pa-
tients indicate that replication of this finding in other
populations is necessary.

A handful of other pharmacogenetic studies aimed at
antidepressant pharmacodynamics have been performed.
Tryptophan hydroxylase is important in the synthesis of
serotonin. Serretti and colleagues (105, 106) studied the
A218C polymorphism (located in a noncoding region of
the tryptophan hydroxylase gene) and found that the A
allele was associated with poor treatment response in 217
depressed patients treated with fluvoxamine and in 121
patients treated with paroxetine. Because the A218C vari-
ant does not affect the expression or structure of the
tryptophan hydroxylase protein, its pharmacogenetic

effect may be related to another functional polymorphism
in close proximity. The 5-HT2A receptor is located on post-
synaptic neurons and may be important in antidepressant
side effects (107). Cusin and coworkers (108) found that
the C allele of the 5-HT2A T102C SNP associated with fail-
ure to respond to clozapine was also marginally associated
with poor response to SSRIs.

Most pharmacogenetic studies aimed at antidepres-
sant pharmacodynamics have hypothesized the effects
on antidepressant efficacy due to functional variation in
neurotransmitter receptors and transporter proteins lo-
cated within the CNS. However, many antidepressant
side effects, such as those associated with the vascula-
ture or the gastrointestinal tract, could be mediated by
interactions between antidepressants and peripheral
neurons and synapses. Future pharmacogenetic studies
should target receptors expressed by neurons of the au-
tonomic nervous system and on end organs as predictors
of antidepressant side effects and treatment discontinu-
ation (109).

Although variations in genes encoding neurotransmit-
ter receptors are a prime targets for pharmacogenetic
studies, antidepressant effects on neurons involve a myr-
iad of downstream effector molecules. Most aminergic
receptors transduce signals through guanine nucleotide
binding proteins (G proteins). Functional changes in
these proteins could alter drug action. Zill and colleagues
(110) examined the C825T functional polymorphism in
the G-protein β3 subunit gene in 76 depressed patients
receiving a variety of antidepressants. TT homozygotes
showed greater treatment response than did other pa-
tients, although this finding is difficult to interpret be-
cause of treatment heterogeneity. Serretti et al. (111)
found no association between D2 and D4 receptor poly-
morphisms and response to fluvoxamine or paroxetine.
However, recent evidence shows that among SSRIs, only
fluoxetine shows a significant effect on dopamine release
(112).

Pharmacogenetics of Mood Stabilizers

There are few pharmacogenetic studies of mood stabi-
lizers. Selecting candidate genes for pharmacogenetic in-
vestigation is difficult because the exact mechanism of
action of established mood stabilizers such as lithium re-
mains uncertain (113, 114). Lithium inhibits the activity
of a number of enzymes, including those involved in the
phosphatidylinositol cycle and phospholipase C signal
transduction, although it has not been demonstrated that
this action is responsible for mood stabilization. Steen
and co-workers (115) tested for associations between
polymorphisms in the inositol polyphosphate 1-phos-
phatase gene and lithium response in two small groups of
bipolar patients. In a group of 23 patients, an association
between the inositol polyphosphate 1-phosphatase
C973A variant was found, but in the second group of 54
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patients, there was no association. Other enzymes related
to inositol phosphate metabolism may be suitable targets
for studies of lithium’s action, as well as unrelated en-
zymes that are inhibited by lithium, such as glycogen syn-
thase kinase-3 (114).

Serretti and Smeraldi and colleagues have extensively
analyzed a group of approximately 125 bipolar and de-
pressed patients treated with lithium prophylaxis. They
found no association between lithium’s efficacy and
polymorphisms at the following loci: the D2 receptor, the
D3 receptor, the D4 receptor, the γ-aminobutyric acid
(GABA) type A receptor α-1 subunit, and the 5-HT2A and
5-HT2C receptors (116–118). They found a less-than-sig-
nificant association of the tryptophan hydroxylase A/A
genotype with lithium response. In an expanded group of
approximately 200 bipolar and depressed patients, they
found no association between lithium efficacy and poly-
morphisms at the catechol O-methyltransferase, the
monoamine oxidase (MAO)-A, and the G-protein β3 sub-
unit loci, but they did find a positive association with the
SLC6A4 promoter polymorphism (119), which they previ-
ously found predicted SSRI response (97). Finally, in a
further expanded group of 443 bipolar and depressed pa-
tients, they found no association between 5-HT2A and
MAO-A polymorphisms and lithium response (108). In-
terpretation of these results is difficult because of diag-
nostic heterogeneity in the patient groups. Furthermore,
most of the candidate genes studied by these researchers
were chosen for their putative association with mood
disorders, rather than for a specific role in the mecha-
nism of action of lithium.

Bipolar disorder is considered to have a high degree of
heritability (120), and it has been suggested that bipolar
patients with a strong family history may respond better to
lithium (121, 122). Turecki and colleagues (123) performed
a genome-wide scan to search for markers linked with
lithium response in pedigrees with bipolar disease. Link-
age was found between lithium response and markers on
chromosomes 15 and 7. These interesting findings will re-
quire replication in other families.

Adverse Effects Induced 
by Psychotropic Drugs

There are often adverse effects arising from the use of
psychiatric medications (2), in part due to limited data on
the mechanism of action of these drugs. It may be that the
best opportunity to counteract adverse effects is the use
of molecular genetics to dissect the principal systems in
the body that process psychiatric medications, including
the liver, the blood-brain barrier, and the target receptors
in the brain.

Antidepressant Drugs

Although the efficacy of antidepressant drugs has been
studied relatively extensively with molecular genetic ap-

proaches, adverse events induced by antidepressant
drugs, including weight gain, hypotension, sedation, an-
ticholinergic effects, sleep disturbance, and antidepres-
sant-induced mania, have received little attention. This
list of adverse effects of antidepressants is by no means
complete, but it points to the fact that a great deal more
research is needed to fully exploit the power of molecular
genetics to find predictors of the patients who will suffer
the most from one or more of these adverse effects. An
intriguing study has been published on the molecular
genetic prediction of antidepressant-induced mania.
Mundo et al. (124) screened more than 300 patients suf-
fering from bipolar disorder in order to delineate a group
of 29 patients who had been treated with serotonergic
antidepressants and had developed a manic episode
while taking that medication. As a control group, from
the same large group of bipolar patients, 27 patients were
selected who had received at least 10 weeks of treatment
with serotonergic antidepressants and had not suffered a
manic episode. In most cases, in this latter group, the pa-
tients had been treated several times with serotonergic
antidepressants and had never suffered a manic episode.
Mundo and colleagues examined the obvious candidate
gene for SSRIs: SLC6A4. Two informative polymorphisms
in this gene were examined: the promoter region poly-
morphism as well as a repeat polymorphism in the sec-
ond intron. These two markers have a relatively low level
of linkage disequilibrium between them, and thus, they
reflect separate regions of genetic variation within the 5-
HT transporter gene. The promoter polymorphism was
shown to have significant association with antidepres-
sant-induced mania, and the short allele was the variant
associated with greater risk. In the previously discussed
pharmacogenetic studies of antidepressant efficacy, the
long allele was most often associated with antidepres-
sant response. Thus, it is not immediately clear regarding
the mechanism by which the short allele might increase
the risk of manic episodes. The most important next step
for the investigation of antidepressant-induced mania is
to replicate these findings.

Antipsychotic Drugs

The main untoward effects of antipsychotic medica-
tions include tardive dyskinesia, weight gain, sedation, ex-
trapyramidal symptoms, long-QT syndrome, blood lipid
abnormalities, and diabetes (2). Pharmacogenetic studies
have been conducted primarily on the adverse effects of
tardive dyskinesia and weight gain.

Tardive dyskinesia. Because overactivity of dopamine
transmission in the basal ganglia and up-regulation of
D2-like receptors have been postulated to play a role in
the pathophysiology of tardive dyskinesia (125), the
genes for these receptors were the highest priority for
molecular genetic study. The D2 receptor gene (DRD2) is
the obvious candidate because it is the main site of ac-
tion of typical antipsychotic medications (56, 57). Studies
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of genetic variation in DRD2 have yielded mostly nega-
tive results (126, 127). It should be noted that DRD2 is
large relative to the other dopamine receptor genes, and
thus, it is difficult for any one investigation to examine all
of the polymorphic sites distributed across the more
than 250-kb length of the gene. Most studies have fo-
cused on the common polymorphisms, including the
TaqIA and B sites, as well as the serine to cysteine variant
at amino acid position 311. Although further work with
DRD2 may be helpful, we can summarize that the dopa-
mine receptor genes other than the D3 gene have not
shown consistent results in the prediction of tardive
dyskinesia.

In the case of the D3 receptor gene (DRD3), several
groups have independently shown that the variant con-
sisting of a serine-to-glycine amino acid change at posi-
tion 9 in the protein is associated with the risk of tardive
dyskinesia (Table 3). Moreover, a recent meta-analysis
revealed a significant role for the glycine allele in the risk
for tardive dyskinesia (137). Parallel support for the role
of this particular D3 polymorphism is provided by data
suggesting that the glycine allele has significantly higher
affinity for dopamine than the serine allele in trans-
fected cell lines (138). Additional intriguing support for
the role of DRD3 in tardive dyskinesia comes from a
study of positron emission tomography (PET) imaging
of patients who were genotyped for the Ser9Gly variant
(139). These patients were scanned with PET before and
after treatment with haloperidol. After the haloperidol

treatment, the patients with the glycine/glycine geno-
type had greater fluorodeoxyglucose metabolism in the
anterior striatum than the haloperidol-treated patients
with one or two copies of the serine allele. The regional
localization of the differential activity according to gen-
otype fits well with the role of the striatum in normal
motor behavior as well as possibly the abnormal motor
movements seen in tardive dyskinesia. In this PET study,
the patients who exhibited increased brain activity in
the striatum displayed the most severe tardive dyskine-
sia symptoms.

In addition to the D3 pharmacodynamic factor, phar-
macokinetic factors have also been examined. CYP2D6 is a
high-affinity but low-capacity metabolic enzyme for halo-
peridol, whereas CYP1A2 has a higher capacity to metabo-
lize haloperidol in the liver. Thus, with long-term treat-
ment, CYP1A2 may be the most important determining
factor of steady-state haloperidol levels. In a study of these
genes in tardive dyskinesia (140), patients who had been
rated with the Abnormal Involuntary Movement Scale
(AIMS) for the symptoms of tardive dyskinesia were geno-
typed for the four common alleles at CYP2D6; no signifi-
cant association was found. However, when the polymor-
phism in CYP1A2 at position 784 in the first intron was
genotyped, patients with the C allele had higher AIMS rat-
ings. However, this finding with CYP1A2 was not repli-
cated in a German sample (141).

Basile et al. (140) also examined the combination of
DRD3 with CYP1A2 to determine whether these two

TABLE 3. Studies of the Association Between the Dopamine D3 Ser9Gly Polymorphism and Tardive Dyskinesia

Study Year

Number 
of

Subjects
Ethnicity or 
Nationality

Methods of 
Assessment of 

Tardive 
Dyskinesia

More Than One
Assessment of 

Tardive 
Dyskinesia Main Findings

Gaitonde et al. (128) 1996 84 Caucasian 
majority (N=81)a

Modified Rogers 
Scale

No Not significant; rate of glycine allele not 
reported

Steen et al. (129) 1997 100 Caucasian Abnormal 
Involuntary 
Movement Scale 
(AIMS)

Yes Association of tardive dyskinesia with the 
glycine allele (p=0.03) and with the 
glycine/glycine genotype (p=0.01) in 
cross-sectional analyses

Inada et al. (130) 1997 105 Japanese AIMS Yes Not significant
Basile et al. (131) 1999 112 85 Caucasian, 

25 African 
American, 
two Asian

AIMS and Hillside 
Dyskinesia Scale

No Higher AIMS total scores associated with 
glycine/glycine genotype (p=0.0005) 
compared to serine/glycine and serine/
serine genotypes; significant also in 
separate analysis for Caucasians (p=0.02) 
and African Americans (p=0.009)

Segman et al. (132) 1999 116 Ashkenazi and 
non-Ashkenazi 
Jewish

AIMS No Tardive dyskinesia associated with serine/
glycine genotype (p=0.0008); total AIMS 
score associated with genotypes carrying 
glycine alleles (p=0.02)

Lovlie et al. (133) 2000 71 European 
Caucasian

AIMS No Nonsignificant association between 
homozygosity for the glycine variant and 
tardive dyskinesia (p=0.20)

Rietschel et al. (134) 2000 157 German Caucasian Tardive Dyskinesia
Rating Scale

Yes Not significant

Liao et al. (135) 2001 115 Taiwan Chinese AIMS No Higher AIMS score with serine-glycine 
genotype compared to serine-serine and 
glycine-glycine genotypes (p=0.01)

Garcia-Barcelo et al. 
(136)

2001 131 Hong Kong 
Chinese

AIMS No Not significant

a There was one subject each of Afro-Caribbean, Middle Eastern, and Vietnamese origin.
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genes interact to predict the risk for tardive dyskinesia.
Although methods to examine gene-gene interactions
are not well defined, a relatively straightforward additive
interaction between DRD3 and CYP1A2 in the risk for tar-
dive dyskinesia was identified. In other words, the pa-
tients who had both the glycine/glycine genotype at
DRD3 and the C/C genotype at CYP1A2 had the most se-
vere tardive dyskinesia. The patients with only one or the
other risk genotype had intermediate levels of symp-
toms. The overall model of prediction of tardive dyskine-
sia severity, which includes age, sex, ethnicity, and smok-
ing status, in addition to the DRD3 and CYP1A2 gene
polymorphisms, accounted for greater than 50% of the
variance in the risk for tardive dyskinesia. This type of
predictive algorithm, which incorporates genetic and en-
vironmental as well as demographic factors, appears
promising as a method for predicting the risk for medica-
tion side effects.

Weight gain. Weight gain is a serious problem in pa-
tients taking antipsychotic medication for extended peri-
ods of time (142–144) and can lead to treatment noncom-
pliance, psychological morbidity, and medical problems,
including type II diabetes, hypertension, cardiovascular
disease, and respiratory difficulties. Not all treated pa-
tients gain weight, however, leading to the notion that the
susceptibility may be due to genetic factors. Similar to the
tardive dyskinesia algorithm described in the previous
section, the tendency to gain weight is likely due to a
combination of factors, including CNS, hepatic, periph-
eral tissue (e.g., adipose and muscle), and environmental.
Most genetic studies of antipsychotic-induced weight
gain thus far have examined genes that code for CNS pro-
teins, primarily receptors.

The selection of candidate genes to be studied in anti-
psychotic-induced weight gain has been based primarily
on the neurobiologic knowledge of satiety mechanisms. It
is quite possible that the medications also operate on pe-
ripheral mechanisms such as metabolic rate and muscle
tone to decrease calorie burning and/or may directly in-
crease lipogenesis, for example. These peripheral mecha-
nisms have only begun to be examined by using molecular
genetic strategies (145). Most studies of weight gain have
focused on the serotonergic mechanisms that are thought
to be involved in satiety. Satiety signals converge on the hy-
pothalamus from several areas of the body, including taste
and olfaction receptors, the stomach, the gut, and the liver.
A survey of the literature of the regulation of feeding be-
havior points to a major role for serotonin, with both ani-
mal and human investigations showing, in general, that in-
creasing serotonin results in decreased feeding, with the
reverse also true. Pharmacologic agonists of the 5-HT1

family of receptors, primarily 1A, cause increased feeding,
while agonists of 5-HT2C lead to decreased feeding (146). It
follows that 5-HT2C antagonists will increase food intake
(147). Of interest, clozapine is a potent 5-HT2C antagonist
as well as a 5-HT1A agonist. 5-HT2C and 5-HT1A receptor

genes are thus prime targets for the molecular genetic in-
vestigation of clozapine-induced weight gain. The hista-
mine system is another important area, since some data
suggest an association between weight gain and histamine
H1 antagonism (148).

Recently, Reynolds et al. (149) reported an association
between the –759 T/C SNP in the upstream putative pro-
moter region of the 5-HT2C receptor gene and antipsy-
chotic-induced weight gain. Evidence has been pre-
sented suggesting that this site alters 5-HT2C expression
(150). Reynolds and colleagues studied this genetic
marker in a group of 110 first-episode Asian patients who
had been treated with risperidone or chlorpromazine.
They found that the C allele significantly predicted
weight gain. Basile et al. (15) were not able to replicate
this finding in a group of 80 Caucasian subjects who were
treated with clozapine; however, these patients were not
treatment-naive before taking clozapine. Clearly, this is
an interesting beginning, and more work is necessary to
confirm the role of the 5-HT2C gene in antipsychotic-
induced weight gain.

Next Steps: From Pharmacogenetics 
to Pharmacogenomics

To date, psychiatric pharmacogenetic studies have
been primarily restricted to relatively small data sets de-
rived from ethnically heterogeneous populations, with
genotyping of a single SNP or limited numbers of SNPs.
Recent advances in genomic information, novel sta-
tistical genetic methods, and marked improvements in
genotyping technologies now provide the means of con-
sidering far more comprehensive and powerful pharma-
cogenetic studies.

The Human Genome Sequence 
and SNP identification

The completion of the human genome sequence by the
federally funded Human Genome Project (12) and a pri-
vate biotechnology firm (151) is a landmark event in the
history of science. Although complete sequence data are
not yet available, the genome sequence that is complete
is already providing the reference sequence for large-
scale efforts aiming to identify genetic variation among
individuals. In particular, there has been a focus on the
identification of hundreds of thousands of SNPs within
the genome.

Many of the SNPs that are being identified may be use-
ful in pharmacogenetic studies. Cargill et al. (152) scanned
the coding region of 106 genes, many with potential rele-
vance to the CNS, and identified an average of 3.7 coding
region SNPs per gene, of which nearly 50% were nonsyn-
onymous; 41% of the nonsynonymous coding region SNPs
had a minor allele frequency of greater than 5%. Nonsyn-
onymous coding region SNPs may have a higher a priori
probability of altering function and be the most powerful
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in pharmacogenetic studies. Therefore, these massive SNP
identification efforts, coupled with data demonstrating
that a significant subset of them may be useful in pharma-
cogenetic studies, suggest that a large number of novel
SNP targets will soon be available for the next generation
of pharmacogenetic studies.

Genomic Control Techniques

Most previous pharmacogenetic studies have used the
case-control design in which, for example, unrelated sub-
jects who respond to medication are compared to nonre-
sponsive patients (13). Although powerful, this approach
may be vulnerable to false positive results secondary to
undetected ethnic stratification between study groups.
Family-based approaches, in which DNA is collected
from the parents or siblings of probands, are an alterna-
tive strategy that is not susceptible to stratification con-
founds (153) but are less feasible and less powerful than
the traditional case-control method for pharmacogenetic
studies. First, many of the patients participating in clini-
cal trials of psychotropic drugs are already in their mid to
late adult years; therefore, collecting DNA from family
members may be difficult because of a lack of availability.
Second, it has been suggested that probands selected
from trios or other family-based designs may be subtly
different from the general population of cases, thus re-
ducing the generalizability of findings made with family-
based designs (154). Finally, the case-control design has
greater statistical power than family-based approaches
(155). These data suggest that the case-control design
would be optimal for pharmacogenetic studies; however,
the potential for undetected ethnic stratification has tem-
pered enthusiasm for this design (156).

Fortunately, “genomic control” methods are under de-
velopment to help account for ethnic stratification in
case-control studies. Genomic control techniques are
based upon the idea that study groups (patients versus
control subjects, responders versus nonresponders, etc.)
can be tested for the presence of stratification by assess-
ing the allele frequency of markers that are unlinked to
the phenotype of interest in each group. Pritchard and
Rosenberg (157) determined that, in theory, no more than
40 unlinked markers, and perhaps less, are necessary to
achieve a 95% probability of detecting stratification in
study groups of over 200 subjects. If stratification is de-
tected, subjects can be removed until stratification is not
present or correction factors can be introduced that ac-
count for the level of stratification between groups (158).
Both approaches reduce study power but minimize the
risk that the case-control design results in a false positive
or negative result. Several studies have appeared recently
that used genomic controls to test for population stratifi-
cation. Xu and colleagues (159) studied the relationship
between SNP markers in the delta opioid receptor in Chi-
nese subjects in a case-control design. As genomic con-
trol markers, they chose well-characterized SNPs in four

additional genes. The SNPs were chosen because they
showed variation in allele frequencies among Asian eth-
nic subgroups, as well as variation between Asians and
Caucasians. Small and co-workers (160) examined adren-
ergic receptor polymorphisms and the risk for hyperten-
sion in a case-control design. Nine highly polymorphic
short tandem-repeat loci were used to control for stratifi-
cation, although it is not stated whether these markers
show variation in allele frequencies among ethnic sub-
populations.

Important issues remain regarding the use of genomic
controls. First, should markers within genes be chosen,
or should markers distant from any known gene be used?
Markers within genes are likely to be better character-
ized, but in theory, they could be functionally associated
with the outcome measure. The optimal degree of het-
erozygosity for genomic controls and variation in ge-
nomic control allele frequencies among ethnic groups
and subgroups is also unclear. Finally, there are no stan-
dards as yet to either the number of control loci that
should be tested or the number of positive results indica-
tive of stratification. These issues will require further
work.

Haplotypes

Pharmacogenetic studies that include hundreds—if
not thousands—of SNPs in multiple candidate genes
must address the issue of multiple testing. One potential
method for data reduction is to organize SNPs within a
gene, or a region of the genome, into haplotypes (or spe-
cific chromosomal combinations of individual alleles of
each SNP across a region). Haplotypes provide more com-
prehensive examinations of single genes and may provide
increased power to detect pharmacogenetic associations
if rare alleles are contributing to phenotypic differences
(161). In many genes studied to date, there are a limited
number of common haplotypes (162), and this may re-
duce the extent of genotyping necessary to analyze a gene
and also reduce the number of SNP comparisons that
need to be conducted.

Progress on the identification of haplotypes within the
human genome is under way. The National Institutes of
Health is supporting a haplotype map-sequencing effort
that will provide publicly available haplotype information
across the genome (163). Moreover, private biotechnology
firms have assessed large numbers of genes for haplotype
structure (161), with many of these genes coding for CNS
proteins that are thought to be involved in psychotropic
drug response, and these data may be available for phar-
macogenetic studies.

Clinical Applications

Although research in pharmacogenetics is growing rap-
idly, with intriguing preliminary data across a number of
phenotypes, a major goal of psychiatric pharmacogenet-
ics—clinical applicability—has not yet been fully realized.
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For this to be accomplished, more replicated data will be

required, and the amount of variance explained by any
single gene or set of genes will need to be significantly
greater than yet observed. With this, pretreatment testing
of patients may be possible, and more specific targets for
new drug development may be achieved. Since the feasi-
bility of genotyping is high, and the costs continue to de-

crease, it does seem likely that within the next few years
pharmacogenetic data will begin to play an important
role in clinical decision making about individual patient
treatment.

Conclusions

Pharmacogenetic studies of psychotropic drug response
have begun to identify several genes that may be impli-
cated in diverse phenotypes, such as antipsychotic drug

efficacy, antidepressant drug response, and development
of drug-induced adverse events. These genes require fur-
ther study, as well as careful functional genomics working
to identify the specific molecular events that may produce
clinical effects in order to contribute to future drug devel-
opment strategies.

More dramatic progress, however, may be made with
the next generation of molecular genetic studies of psy-
chotropic drug response. It is now possible to collect DNA

from patients enrolled in large-scale clinical trials of
thousands of patients, select SNPs that occur in many of
the genes expressed in the CNS, and compare SNP allele
frequencies in large case-control designs. Moreover, as
methods are developed to account for undetected ethnic
stratification between groups, the amount of stratifica-
tion (if any) can be quantified between groups and ac-

counted for in the analyses. Improved bioinformatics
tools and statistical methods will be required to deal with
the complexity of data that will be generated, but it seems
likely that such methods may become available as the
level of interest in genetic approaches to complex dis-
eases and to phenotypes such as drug response increases.

With these developments in place, the first generation of
pharmacogenetic studies that used SNPs in relatively lim-
ited numbers of candidate genes may be replaced by
studies in which the complete genome is assessed, inau-
gurating the era of pharmacogenomic studies of psycho-
tropic drug response.
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APPENDIX 1. Glossary of Pharmacogenetics

Term Definition
Allele One of several alternative forms of a gene at a 

given locus
Coding Occurs in exons (coding regions) of genes
Conservative Alters the structure of the protein but not its 

function
Haplotype A combination of alleles at two or more 

closely linked gene loci on the same 
chromosome, e.g., in the human leukocyte 
antigen system

Heritability The ratio of additive genetic variance. 
Phenotypic variance is the result of the 
interaction of genetic and nongenetic 
factors in a population

Linkage 
disequilibrium

Statistical association of two alleles at a rate 
greater than would be predicted by chance, 
owing to the fact that the two alleles are 
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