The Disrupted in Schizophrenia 1 (DISC1) gene, located at the break point of a chromosomal translocation at 1q21.1, co-segregates with schizophrenia (SZ) and other psychiatric disorders. It has been suggested that this translocation, which results in a truncation of the DISC1 protein, contributes to SZ by affecting neuronal functioning in many areas of the brain including the hippocampus (Morris et al. 2003).

Recently, Callicott et al. (2005) identified a single nucleotide polymorphism (SNP) within the DISC1 gene that was significantly associated with SZ and with the structure and function of the hippocampus. Specifically, the common allele (Ser) of Ser704Cys was associated with reduced hippocampal gray matter volume and altered engagement of the hippocampus during cognitive tasks.

Dysfunction of the hippocampus, such as alterations in regional cerebral blood flow (Liddle et al. 1992) and volumetric reductions (Weinberger 1999), is a consistent finding in SZ and often associated with the severity of positive psychotic symptoms. For example, Jacobsen et al. (1998), in a longitudinal study of childhood-onset SZ, found that higher delusion ratings at a 2-year follow-up were significantly correlated with decreases in hippocampal volume. Furthermore, Strasser et al. (2005) found that although there were no differences in hippocampal volume between subjects with non-psychotic bipolar disorder and healthy control subjects, subjects with psychotic bipolar disorder had significantly reduced hippocampal volume relative to healthy control subjects.

On the basis of the reported relation between positive symptoms and hippocampal volume and the reported effects of DISC1 genotype on hippocampal volume, we hypothesized that DISC1 genotype would be related to lifetime severity of positive symptoms in SZ. Thus, we evaluated the effect of variation within a five-locus haplotype containing Ser704Cys on the lifetime severity of positive symptoms in SZ. Additional analyses were then conducted to assess the effects of each SNP within the haplotype on severity of positive symptoms.

Methods and Materials

Participants

The study sample was 199 Caucasians meeting criteria, on the basis of the Structured Clinical Interview for the DSM-IV (SCID), for SZ or schizoaffective disorder. All subjects provided informed consent to a protocol approved by the Institutional Review Board of the North Shore-Long Island Jewish Health System (NSLIJHS). Subjects were recruited from the Zucker Hillside Hospital, a division of the NSLIJHS, in Glen Oaks, New York.

Assessment

Each subject was assessed with a SCID administered by trained and reliable raters. The SCID contains a total of 14 positive symptom items rated on a continuous scale where 1 = absent, 2 = subthreshold, and 3 = present. Ratings on these items were recorded on the basis of the subject’s report as well as medical records and other available sources. An overall delusions rating included ratings on the referential, paranoid, grandiose, somatic, control, thought broadcasting, bizarre, and other delusion items. An overall hallucinations rating included ratings on the auditory, visual, tactile, and other hallucinations items. Finally, an overall disorganization rating included the ratings on the disorganized behavior and disorganized speech items. These overall ratings, which represent lifetime presence of symptomatology, were calculated for each subject. Only those subjects who had all items rated were used in the present analyses. Thus, if any of the items in the psychosis module indicated that there was inadequate information about the symptom to allow for an accurate rating, the subject was excluded from the analysis.

Genotyping

Genotyping and haplotype construction were completed as previously described (Hodgkinson et al. 2004). Only two haplo-
types with frequencies above 10% in the previously identified haplобlock 6 (comprising rs821592, rs821597, rs821653, rs843979, and rs821616 [Ser704Cys]) were identified and used in these analyses (11222: frequency approximately 65%; 22111: frequency approximately 21%).

Analysis

Relationship of overall delusions, hallucinations, and disorganization ratings to each of the two haplotypes were examined with two multivariate analyses of covariance (MANCOVAs). To avoid the potential confound of an effect of genotype on overall symptom severity, Global Assessment of Functioning (GAF) score was used as a covariate in both MANCOVAs. When appropriate, post hoc analyses were used to identify the effect of genotype on individual symptoms and regression analyses were conducted to assess the relative contribution of DISC1 genotype to symptom severity. After haplotype analyses, SNPs comprising the haplotype were also assessed for their effects on overall delusions, hallucinations, and disorganization ratings.

Results

A total of 116 heterozygotes, 79 homozygotes, and 20 non-carriers of the 11222 haplotype were identified. A total of 71 carriers (61 heterozygotes, 10 homozygotes) and 124 non-carriers of the 22111 haplotype were identified. Because no differences were found between 22111 heterozygotes and homozygotes, and to increase statistical power, these groups were combined for further analyses. The MANCOVAs covarying for GAF score, comparing the haplotype groups on the overall delusions, hallucinations, and disorganization ratings, revealed an overall effect of the 22111 haplotype \(F(3,172) = 4.95, p = .003 \) but no effect of the 11222 haplotype. Post hoc analyses revealed that carriers of the 22111 haplotype had a significantly lower overall delusions rating than non-carriers \(F(1,174) = 12.15, p = .001 \). This difference is shown in Figure 1. Moreover, a MANCOVA comparing carriers and non-carriers of this haplotype on individual delusion ratings including referential, paranoid, grandiose, somatic, control, thought broadcasting, bizarre, and other delusions also indicated a significant effect of haplotype \(F(8,169) = 2.28, p = .02 \). Post hoc analyses indicated a significant effect of haplotype on paranoid delusions \(F(1,177) = 6.55, p = .01 \) and other delusions \(F(1,177) = 6.28, p = .01 \).

Discussion

We detected a significant association between a DISC1 haplotype and lifetime severity of delusions in SZ. Specifically, patients who were carriers of a common haplotype containing the minor allele at Ser704Cys had significantly lower ratings on paranoid delusions than non-carriers. This finding is consistent with previous reports of an association between the Ser allele and decreased hippocampal volume and between decreased hippocampal volume and severity of positive symptoms.

Although it could be argued that this locus confers risk in a subset of patients who have significant positive symptoms, it is unlikely that Ser704Cys is a susceptibility locus. In our sample, neither the individual SNP nor the haplotype carrying it was significantly associated with diagnosis (Hodgkinson et al. 2004), and therefore it might be more parsimonious to conclude that Ser704Cys acts as a modifier (Fanous and Kendler 2005) that influences the clinical presentation of SZ rather than increasing

A stepwise multiple regression including haplotype status, gender, age, duration of illness and GAF score as predictors of the severity of paranoid delusions revealed that haplotype status was the only significant predictor \(F(1,175) = 8.19, p = .005 \), accounting for approximately 4.5% of the variance.

Because the other delusions item requires additional dichotomous rating (0 = absent, 1 = present) on religious, guilty, jealous, or erotomanic delusions, the relation between the 22111 haplotype and these delusion subtypes were analyzed with \(\chi^2 \) analyses. These analyses revealed no effect of DISC1 genotype.

Exploratory analyses, MANCOVAs covarying for GAF score, assessed the effect of the individual SNPs within the haplotype on the severity of overall delusions, hallucinations, and disorganization ratings. These analyses revealed significant effects at four of the five loci: rs821592 \(F(3,190) = 3.56, p = .015 \), rs821653 \(F(3,180) = 4.71, p = .003 \), rs843979 \(F(3,191) = 3.88, p = .010 \), and Ser704Cys \(F(3,189) = 5.28, p = .002 \), and with the exception of rs821592, all of these effects remained significant after correction for multiple testing. Post hoc analyses, carried out on the three significant SNPs, indicated a significant effect of genotype on the overall delusions rating at rs821653: \(p = .002 \); rs843979: \(p = .031 \); and Ser704Cys: \(p = .001 \). In these analyses, however, only rs821653 and Ser704Cys remain significant after correction for multiple testing. These data are shown in Figure 1.

![Figure 1](https://www.sobp.org/journal)
the risk for SZ. This type of analysis is consistent with reported
relations between psychosis and 5-HTTLPR genotype (Malhotra
et al. 1998) and contrasts with data from our group (DeRosse et
al. 2006) and others (Fanous et al. 2005) in which risk haplotypes
of dysbindin have been linked to negative symptoms but not
positive symptoms in SZ. Recent data suggest that DISC1 might
exert its influence on positive symptoms through neural circuitry
within the hippocampus and prefrontal cortex (Callicott et al.
2005; Cannon et al. 2005). Gamma-aminobutyric acid (GABA)ergic
neurons are located in all regions of the hippocampus, and their
activity might have significant effects on neuronal activity within the
prefrontal cortex and other areas associated with psychosis (Keverne
et al. 1999).

Although the specific mechanism is unknown, recent data
suggest that the DISC1 protein mediates GABAergic function
through its interaction with activating transcription factors (ATF)
4 and 5. Interaction of DISC1 with ATF4/5 is lost upon DISC1
truncation, and ATF4/5 regulation of GABA-B receptor function
might also be lost (Morris et al. 2003). These data suggest that
DISC1 might influence severity of psychosis by mediating
GABAergic function within the hippocampal formation and
related circuitry.

Several limitations of the current study should be noted. First,
although the SCID assesses lifetime symptomatology, the use of
more comprehensive rating scales, which were not available in the
present dataset, are preferred. Second, we only analyzed a single
haplotype block in our study. Although this haplotype block
contains an SNP (Ser704Cys) demonstrated to relate to hippocampal
volume and function, it should be noted that there are no data on
the biological significance of this SNP from in vitro assays.

In summary, we have detected a significant association be-
tween a DISC1 haplotype and severity of positive symptoms in a
relatively large cohort of patients with SZ. These data suggest that
DISC1 genotype might modify the clinical presentation of SZ,
representing another step toward a molecular classification of
psychiatric illness.

This study was supported by grants MH001760 (AKM), The
Stanley Medical Research Institute (AKM), National Alliance for
Research in Schizophrenia and Depression (AKM), and intramural
support to the National Institute on Alcohol Abuse and Alcolobism
(NIAAA), and National Institutes of Health (DG).

Variation in DISC1 affects hippocampal structure and function and in-
creases risk for schizophrenia. PNAS 102:8627–8632.

Cannon TD, Hennah W, van Erp TG, Thompson PM, Lonnerqvist J, Huttunen M,
et al. (2005): Association of DISC1/TRAX haplotypes with schizophrenia,
prefrontal gray matter, and impaired short- and long-term

DeRosse P, Funke B, Burdick KE, Lenz T, Ekholm JM, Kane JM, Malhotra AK
(2006): Dysbindin (DTNBP1) genotype and negative symptoms in

Fanous A, Kendler KS (2005): Genetic heterogeneity, modifier genes, and
quantitative phenotypes in psychiatric illness: Searching for a frame-

(2005): Relationship between a high-risk haplotype in the dystrobrein
binding protein-1 gene (DTNBPI) and clinical features of schizophrenia.

Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH, Mal-
hotra AK (2004): Disrupted in schizophrenia 1 (DISC1): Association with
schizophrenia, schizoaffective disorder and bipolar disorder. Am J Hum
Genet 75:862–872.

Jacobsen LK, Giedd JN, Castellanos FX, Vaituzis AC, Hamburger SD, Kumra S,
et al. (1998): Progressive reduction in temporal lobe structures in child-

Keverne EB (1999): GABA-ergic neurons and the neurobiology of schizo-

Liddle PF, Friston JK, Frith CD, Frackowiak RS (1992): Cerebral blood flow and

functional serotonin transporter (S-HTT) polymorphism is associated with
psychosis in neuroleptic-free schizophrenics. Mol Psychiatry 3:328–
332.

Morris JA, Kandpal G, Ma L, Austin CP (2003): DISC1 (Disrupted in Schizo-
phrenia 1) is a centrosome-associated protein that interacts with
AMP1A, MIPT3, ATF 4/5 and NUDEL: Regulation and loss of interaction

Strasser HC, Lilyestrom J, Ashby ER, Honeycutt NA, Schretlen DJ, Pulver AE, et
al. (2005): Hippocampal and ventricular volumes in psychotic and non-
psychotic bipolar patients compared with schizophrenia patients and

Weinberger DR (1999): Cell biology of the hippocampal formation in schizo-